(12) 公開特許公報(A)

(11)特許出願公開番号

特開2013-8959 (P2013-8959A)

(43) 公開日 平成25年1月10日(2013.1.10)

(51) Int.Cl.			F I					テー	73-1	ド(参え	考)
HO1L	29/786	(2006.01)	HO1L	29/78	6	18B		5 F (038		
H01L	21/8234	(2006.01)	HO1L	27/08	1	02B		5 F (048		
HO1L	27/088	(2006.01)	HO1L	29/78	6	14		5 F (083		
HO1L	21/8242	? (2006.01)	HOIL	27/10	6	7 1 C		5 F	110		
HO11	27/108	(2006.01)	HOIL	27/10	6	21Z					
	2.7, 700	(2000) 0 //	審査請求 未	清求請	求項の)数 11	ΟL	(全 24	4頁)	最終]	頁に続く
(21) 出願番号	÷	特願2012-118160	(P2012-118160)	(71) 出原	〔 人 〕	00015387	78				
(22) 出願日		平成24年5月24日	(2012.5.24)	、 ,		株式会社	半導体	エネル	ィー研	究所	
(31)優先権主	張番号	特願2011-117516	(P2011-117516)			神奈川県	厚木市	ī長谷3	98番	地	
(32)優先日		平成23年5月26日	(2011.5.26)	(72) 発明	者	坂田 淳	一郎			_	
(33)優先権主	張国	日本国 (JP)	(,	(-) / - /	•	神奈川県	厚木市	長谷3	98番	地梯	式会社
						半導体エ	ネルキ	一研究	 所内		
				Fターム	、(参考	≸) 5F038	AC05	AC14	DF05	EZ02	EZ06
							EZ20				
						5F048	AB01	AB03	AC01	AC04	AC10
							BA01	BA10	BA14	BA16	BA20
							BB01	BB03	BB09	BB11	BB12
							BC16	BC18	BD02	BD10	BE03
							BF07	BF11	BF15	BF16	BG13
							CB01	DA23	51.10	51 10	2010
							0001				
									最	終百に	続く

(54) 【発明の名称】半導体装置およびその作製方法

(57)【要約】

(19) 日本国特許庁(JP)

【課題】同一基板上に酸化物半導体を用いたオフセット トランジスタとオフセットでないトランジスタを形成す る。

【解決手段】酸化物半導体層202とゲート絶縁物20 3とゲート配線となる第1層配線204a、第1層配線 204bを形成する。その後、オフセットトランジスタ をレジスト206で覆い、酸化物半導体層に不純物を導 入し、N型酸化物半導体領域207を形成する。その後 、第2層配線209a、第2層配線209b、第2層配 線209cを形成する。以上の工程により、オフセット トランジスタとそうでないトランジスタ(アラインドト ランジスタ等)を形成することができる。 【選択図】図2

【特許請求の範囲】

【請求項1】

第1トランジスタと、第2トランジスタと、を有し、

前記第1トランジスタは、第1のゲート電極と、前記第1のゲート電極に隣接する第1の ゲート絶縁物と、前記第1のゲート絶縁物を介して前記第1のゲート電極と隣接する第1 の酸化物半導体層と、前記第1の半導体層に接する第1のソース電極及び第1のゲート電 極とからなり、

前記第2トランジスタは、第2のゲート電極と、前記第2のゲート電極に隣接する第2の ゲート絶縁物と、前記第2のゲート絶縁物を介して前記第2のゲート電極と隣接する第2 の酸化物半導体層と、前記第2の半導体層に接する第2のソース電極及び第2のゲート電 極とからなり、

- 前記第1のソース電極及び前記第1のドレイン電極の一方は、前記第2のソース電極及び 前記第2のドレイン電極の一方と接続され、
- 上方から見たときに、前記第1のソース電極及び第1のドレイン電極は、第1のゲート電 極から離れていることを特徴とする半導体装置。

【請求項2】

上方から見たときに、前記第2のソース電極及び第2のドレイン電極は、第2のゲート電 極から離れていることを特徴とする請求項1に記載の半導体装置。

【請求項3】

請求項1において、

- さらに第3のゲート電極を含む第3トランジスタを有し、
- 前記第3のゲート電極は、前記第2のソース電極及び前記第2のドレイン電極のもう一方 と接続されていることを特徴とする請求項1に記載の半導体装置。

【請求項4】

前記第1のゲート電極は第2のゲート電極と接続されていることを特徴とする請求項1に 記載の半導体装置。

【請求項5】

前記第1の酸化物半導体層と前記第2の酸化物半導体層のそれぞれは、インジウム及び亜 鉛を含むことを特徴とする請求項1に記載の半導体装置。

【請求項6】

- 第1トランジスタと、第2トランジスタと、第1の容量と、第2の容量と、を有し、 前記第1トランジスタは、第1のゲート電極と、前記第1のゲート電極に隣接する第1の ゲート絶縁物と、前記第1のゲート絶縁物を介して前記第1のゲート電極と隣接する第1 の酸化物半導体層と、前記第1の半導体層に接する第1のソース電極及び第1のゲート電 極とからなり、
- 前記第2トランジスタは、第2のゲート電極と、前記第2のゲート電極に隣接する第2の ゲート絶縁物と、前記第2のゲート絶縁物を介して前記第2のゲート電極と隣接する第2 の酸化物半導体層と、前記第2の半導体層に接する第2のソース電極及び第2のゲート電 極とからなり、

前記第1のソース電極及び前記第1のドレイン電極の一方は、前記第2のソース電極及び 前記第2のドレイン電極の一方と接続され、

前記第2のソース電極及び前記第2のドレイン電極の一方は、前記第1の容量に接続され

前記第2のソース電極及び前記第2のドレイン電極のもう一方は、前記第2の容量に接続 され、

上方から見たときに、前記第1のソース電極及び第1のドレイン電極は、第1のゲート電 極から離れていることを特徴とする半導体装置。

【請求項7】

上方から見たときに、前記第2のソース電極及び第2のドレイン電極は、第2のゲート電 極から離れていることを特徴とする請求項6に記載の半導体装置。 10

30

20

【請求項8】

請求項1において、

- さらに第3のゲート電極を含む第3トランジスタを有し、
- 前記第3のゲート電極は、前記第2のソース電極及び前記第2のドレイン電極のもう一方 と接続されていることを特徴とする請求項6に記載の半導体装置。

(3)

【請求項9】

前記第1のゲート電極は第2のゲート電極と接続されていることを特徴とする請求項6に 記載の半導体装置。

【請求項10】

前記第1の酸化物半導体層と前記第2の酸化物半導体層のそれぞれは、インジウム及び亜 10 鉛を含むことを特徴とする請求項6に記載の半導体装置。

【請求項11】

請求項6において、

- さらにフリップフロップ回路を有し、
- 前記第2のソース電極及び前記第2のドレイン電極のもう一方は前記フリップフロップ回路に接続されていることを特徴とする請求項6に記載の半導体装置。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、酸化物半導体を用いた半導体装置に関する。ここで、半導体装置とは、半導体 20 特性を利用することで機能する素子および装置全般を指すものである。例えば、半導体を 使用したメモリ、演算回路、整流器、表示装置等が挙げられるが、これらに限定されない 。例えば、半導体を用いたメモリとしては、特許文献1を参照すればよい。

【背景技術】

[0002]

近年、インジウム、ガリウム、亜鉛の複合酸化物を用いた半導体によって作製されたトラ ンジスタや表示装置、メモリ等が報告されている(例えば、特許文献2乃至特許文献5参 照)。

【先行技術文献】

【特許文献】

【0003】

【特許文献1】米国特許第7468901号明細書

【特許文献 2 】米国特許第 7 6 7 4 6 5 0 号明細書

- 【特許文献3】米国特許公開第2011/0058116号明細書
- 【特許文献4】米国特許公開第2011/0216571号明細書
- 【特許文献 5】米国特許公開第2011/0278571号明細書

【発明の概要】

【発明が解決しようとする課題】

【0004】

本発明の一態様は、酸化物半導体を用いて形成される、少なくとも2つのトランジスタを 含む新規な集積回路およびその作製方法を提供することを課題の一とする。なお、これ以 外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明 細書、図面、請求項などの記載から、これ以外の課題を抽出することが可能である。

【課題を解決するための手段】

【 0 0 0 5 】

上記の課題を解決できる構成を以下に示す。それに先立って、本明細書で使用する用語に ついて説明する。本明細書等において、トランジスタとは、ゲートと、ドレインと、ソー スとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子 、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電 極)の間にチャネル領域を有しており、ドレインとチャネル領域とソースとを介して電流

50

30

を流すことが出来るものである。

【 0 0 0 6 】

ここで、ソースとドレインとは、トランジスタの構造又は動作条件等によって変わるため 、いずれがソースまたはドレインであるかを限定することが困難である。そこで、ソース として機能する部分、及びドレインとして機能する部分を、ソース又はドレインと呼ばず 、ソースとドレインとの一方を、第1電極と表記し、ソースとドレインとの他方を第2電 極と表記する場合がある。

[0007]

なお、キャパシタやダイオードのような二端子素子についても、一方の電極を第1電極と 呼び、他方の電極を第2電極と呼ぶ場合がある。その際、キャパシタやダイオードにおい て、正極、負極の区別があるときであっても、第1電極がいずれであるかを指すものでは ない。ただし、回路の性質上、正極と負極を指定する必要があるときは、別途、記載する ことがある。

【 0 0 0 8 】

なお、本明細書等において、第1、第2、第3などの語句は、様々な要素、部材、領域、 層、区域を他のものと区別して記述するために用いられる。よって、第1、第2、第3な どの語句は、要素、部材、領域、層、区域などの数を限定するものではない。さらに、例 えば、「第1の」を「第2の」又は「第3の」などと置き換えることが可能である。

【0009】

なお、本明細書等において、XとYとが接続されている、と明示的に記載する場合は、X とYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、X とYとが直接接続されている場合とを含むものとする。ここで、X、Yは、対象物(例え ば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。したがっ て、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または 文章に示された接続関係以外のものも含むものとする。

[0010]

XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能 とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイ オードなど)が、XとYとの間に1個以上接続されることが可能である。

【0011】

なお、XとYとが電気的に接続されている、と明示的に記載する場合は、XとYとが電気 的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで接続さ れている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別 の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)とを含む ものとする。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続 されている、とのみ明示的に記載されている場合と同じであるとする。

[0012]

なお、本明細書等においては、能動素子(トランジスタなど)、受動素子(キャパシタな ど)などが有するすべての端子について、その接続先を特定しなくても、当業者であれば 、発明の一態様を構成することは可能な場合がある。特に、端子の接続先が複数のケース 考えられる場合には、その端子の接続先を特定の箇所に限定する必要はない。したがって 、能動素子、受動素子などが有する一部の端子についてのみ、その接続先を特定すること によって、発明の一態様を構成することが可能な場合がある。

【0013】

なお、本明細書等においては、ある回路について、少なくとも接続先を特定すれば、当業 者であれば、発明を特定することが可能な場合がある。または、ある回路について、少な くとも機能を特定すれば、当業者であれば、発明を特定することが可能な場合がある。 【0014】

したがって、ある回路について、機能を特定しなくても、接続先を特定すれば、発明の一

(4)

50

40

10

20

態様として開示されているものであり、発明の一態様を構成することが可能である。または、ある回路について、接続先を特定しなくても、機能を特定すれば、発明の一態様として開示されているものであり、発明の一態様を構成することが可能である。 【0015】

(5)

なお、本明細書等において、明示的に単数として記載されているものについては、単数で あることが望ましい。ただし、これに限定されず、複数であることも可能である。同様に 、明示的に複数として記載されているものについては、複数であることが望ましい。ただ し、これに限定されず、単数であることも可能である。

本発明の一態様は、酸化物半導体を有する第1トランジスタと第2トランジスタとを有し 、第1トランジスタの第2電極と第2トランジスタの第1電極が接続し、第1トランジス タはゲートと第1電極および第2電極とがオフセットである構造を有するトランジスタ(以下、オフセットトランジスタという)である半導体装置である。

[0017]

本発明の一態様は、酸化物半導体を有する第1トランジスタと第1容量素子と酸化物半導体を有する第2トランジスタと第2容量素子を有し、第1トランジスタの第2電極と第2トランジスタの第1電極と第1容量素子の第1電極とが接続し、第2トランジスタの第2電極は第2容量素子の第1電極と接続し、第1容量素子および第2容量素子の第2電極は、第1トランジスタのゲートおよび第2トランジスタのゲートと異なるノードに接続されており、第1トランジスタはオフセットトランジスタである半導体装置である。 【0018】

本発明の一態様は、酸化物半導体を有する第1トランジスタと容量素子と酸化物半導体を 有する第2トランジスタとフリップフロップ回路とを有し、第1トランジスタの第2電極 と容量素子の第1電極と第2トランジスタのゲートが接続し、容量素子の第2電極は、第 1トランジスタのゲートと異なるノードに接続されており、第2トランジスタの第1電極 はフリップフロップ回路に接続する半導体装置である。

[0019]

上記において、第2トランジスタはゲートが第1電極あるいは第2電極とオーバーラップ する構造を有するトランジスタ(以下、オーバーラップトランジスタという)であっても よい。また、上記において、第2トランジスタはオフセットトランジスタでもよい。 【0020】

また、本発明の一態様は、第1トランジスタの第1電極と第2トランジスタの第2電極と を作製する工程と、酸化物半導体の膜を形成する工程と、第1トランジスタのゲートと第 2トランジスタのゲートと第1容量素子の第2電極と第2容量素子の第2電極とを形成す る工程と、少なくとも第1トランジスタの第1電極とゲートを覆うマスクを形成する工程 と、酸化物半導体の膜に不純物を混入させる工程と、を有し、第1トランジスタの第1電 極とゲートはオフセットであり、第2トランジスタの第2電極とゲートがオフセットであ る半導体装置の作製方法である。

【0021】

また、本発明の一態様は、酸化物半導体の膜を形成する工程と、第1トランジスタのゲートと第2トランジスタのゲートとを形成する工程と、少なくとも第1トランジスタのゲートを覆うマスクを形成する工程と、酸化物半導体の膜に不純物を混入させる工程と、第1トランジスタの第1電極と第2トランジスタの第2電極とを形成する工程と、第1容量素子の第2電極とと第2容量素子の第2電極とを形成する工程とを有し、第1トランジスタの第1電極とゲートはオフセットであり、第2トランジスタの第2電極とゲートがオフセットである半導体装置の作製方法である。

用いる酸化物半導体としては、少なくともインジウム(In)あるいは亜鉛(Zn)を含むことが好ましい。特にInとZnを含むことが好ましい。また、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすためのスタビライザーとして、それらに加

20

10

えてガリウム(Ga)を有することが好ましい。また、スタビライザーとしてスズ(Sn)を有することが好ましい。また、スタビライザーとしてハフニウム(Hf)を有することが好ましい。また、スタビライザーとしてアルミニウム(Al)を有することが好ましい。

[0023]

また、他のスタビライザーとして、ランタノイドである、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム (Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホル ミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ル テチウム(Lu)のいずれか一種あるいは複数種を有してもよい。 【0024】

例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化亜鉛、二元系金属の酸化物であるIn-Zn系酸化物、Sn-Zn系酸化物、Al-Zn系酸化物、Zn-Mg系酸化物、Sn-Mg系酸化物、In-Ga系酸化物、Zn-Mg系酸化物、Sn-Mg系酸化物、In-Al-Zn系酸化物であるIn-Ga-Zn系酸化物(IGZOとも表記する)、In-Al-Zn系酸化物、In-Sn-Zn系酸化物、Sn-Al-Zn系酸化物、In-Hf-Zn系酸化物、In-La-Zn系酸化物、In-Ce-Zn系酸化物、In-Fr-Zn系酸化物、In-Sm-Zn系酸化物、In-Eu-Zn系酸化物、In-Gd-Zn系酸化物、In-Tb-Zn系酸化物、In-Py-Zn系酸化物、In-Ho-Zn系酸化物、In-Er-Zn系酸化物、In-Tb-Zn系酸化物、In-Sm-Ca-Zn系酸化物、In-Hf-Al-Sn-Al-Zn系酸化物、In-Hf-Ga-Zn系酸化物、In-Hf-Al-Zn系酸化物、In-Hf-Al-Zn系酸化物、In-Sn-Al-Zn系酸化物、In-Sn-Hf-Zn系酸化物、In-Hf-Al-Zn系酸化物を用いることができる。

【0025】

なお、ここで、例えば、In-Gа-Ζn系酸化物とは、InとGaとΖnを主成分とし て有する酸化物という意味であり、InとGaとΖnの比率は問わない。また、InとG aとΖn以外の金属元素が入っていてもよい。

[0026]

また、酸化物半導体として、In MO₃(ZnO)₅(m > 0、且つ、mは整数でない) で表記される材料を用いてもよい。なお、Mは、Ga、Fe、Mn及びCoから選ばれた 一の金属元素または複数の金属元素を示す。また、酸化物半導体として、In₂SnO₅ (ZnO)₅(n > 0、且つ、nは整数)で表記される材料を用いてもよい。

[0027]

例えば、In:Ga:Zn=1:1:1(=1/3:1/3:1/3)あるいはIn:G a:Zn=2:2:1(=2/5:2/5:1/5)の原子比のIn-Ga-Zn系酸化 物やその組成の近傍の酸化物を用いることができる。あるいは、In:Sn:Zn=1: 1:1(=1/3:1/3)、In:Sn:Zn=2:1:3(=1/3:1/ 6:1/2)あるいはIn:Sn:Zn=2:1:5(=1/4:1/8:5/8)の原 子比のIn-Sn-Zn系酸化物やその組成の近傍の酸化物を用いるとよい。 【0028】

しかし、これらに限られず、必要とする半導体特性(移動度、しきい値、ばらつき等)に 応じて適切な組成のものを用いればよい。また、必要とする半導体特性を得るために、キ ャリア濃度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間結合距離、密度 等を適切なものとすることが好ましい。

【 0 0 2 9 】

例えば、In-Sn-Zn系酸化物では比較的容易に高い移動度が得られる。しかしなが ら、In-Ga-Zn系酸化物でも、バルク内欠陥密度を低減することにより移動度を上 げることができる。 10

【 0 0 3 0 】

なお、例えば、In、Ga、Znの原子数比がIn:Ga:Zn=a:b:c(a+b+ c=1)である酸化物の組成が、原子数比がIn:Ga:Zn=A:B:C(A+B+C =1)の酸化物の組成の近傍であるとは、a、b、cが、

 $(a - A)^{2} + (b - B)^{2} + (c - C)^{2} r^{2}$

を満たすことをいい、rは、0.05とすればよい。他の酸化物でも同様である。

【0031】

酸化物半導体は単結晶でも、非単結晶でもよい。後者の場合、アモルファスでも、多結晶 でもよい。また、アモルファス中に結晶性を有する部分を含む構造でも、非アモルファス でもよい。

【 0 0 3 2 】

アモルファス状態の酸化物半導体は、比較的容易に平坦な表面を得ることができるため、 これを用いてトランジスタを作製した際の界面散乱を低減でき、比較的容易に、比較的高 い移動度を得ることができる。

【 0 0 3 3 】

また、結晶性を有する酸化物半導体では、よりバルク内欠陥を低減することができ、表面 の平坦性を高めればアモルファス状態の酸化物半導体以上の移動度を得ることができる。 表面の平坦性を高めるためには、平坦な表面上に酸化物半導体を形成することが好ましく 、具体的には、平均面粗さ(Ra)が1nm以下、好ましくは0.3nm以下、より好ま しくは0.1nm以下の表面上に形成するとよい。

【 0 0 3 4 】

なお、 R a は、 J I S B 0 6 0 1 で定義されている中心線平均粗さを面に対して適用で きるよう三次元に拡張したものであり、「基準面から指定面までの偏差の絶対値を平均し た値」と表現でき、以下の式にて定義される。

【0035】

【数1】

$$Ra = \frac{1}{S_0} \int_{y_2}^{y_1} \int_{x_2}^{x_1} |f(x, y) - Z_0| dx dy$$

【0036】

なお、上記において、 S₀は、測定面(座標(x₁,y₁)(x₁,y₂)(x₂,y₁))(x₂,y₂)の4点で表される四角形の領域)の面積を指し、 Z₀は測定面の平均高 さを指す。Raは原子間力顕微鏡(AFM:Atomic Force Microsc ope)にて評価可能である。

【0037】

なお、酸化物半導体の膜が結晶性を有している場合には、 c 軸配向し、かつ a b 面、表面 または界面の方向から見て三角形状または六角形状の原子配列を有し、 c 軸においては金 属原子が層状または金属原子と酸素原子とが層状に配列しており、 a b 面においては a 軸 または b 軸の向きが異なる(c 軸を中心に回転した)結晶を含む酸化物半導体(C A A C : C - A x i s A l i g n e d C r y s t a l l i n e O x i d e S e m i c o n d u c t o r (C A A C - O S) ともいう。)の膜であることが好ましい。

【0038】

CAAC-OSとは、広義に、非単結晶であって、そのab面に垂直な方向から見て、三 角形、六角形、正三角形または正六角形の原子配列を有し、かつc軸方向に垂直な方向か ら見て、金属原子が層状、または金属原子と酸素原子が層状に配列した相を含む酸化物半 導体をいう。

【 0 0 3 9 】

CAAC-OSは単結晶ではないが、非晶質のみから形成されているものでもない。また、CAAC-OSは結晶化した部分(結晶部分)を含むが、1つの結晶部分と他の結晶部

20

分の境界を明確に判別できないこともある。

【 0 0 4 0 】

CAAC-OSを構成する酸素の一部は窒素で置換されてもよい。また、CAAC-OS を構成する個々の結晶部分の c 軸は一定の方向(例えば、CAAC-OSが形成される基 板面、CAAC-OSの表面などに垂直な方向)に揃っていてもよい。または、CAAC -OSを構成する個々の結晶部分の a b 面の法線は一定の方向(例えば、CAAC-OS が形成される基板面、CAAC-OSの表面などに垂直な方向)を向いていてもよい。

【0041】

CAAC-OSは、その組成などに応じて、導体であったり、半導体であったり、絶縁体 であったりする。また、その組成などに応じて、可視光に対して透明であったり不透明で あったりする。

【0042】

このようなCAAC-OS膜の例として、膜表面またはCAAC-OSが形成される基板 面に垂直な方向から観察すると三角形または六角形の原子配列が認められ、かつその膜断 面を観察すると金属原子または金属原子および酸素原子(または窒素原子)の層状配列が 認められる結晶を挙げることもできる。

【発明の効果】

【 0 0 4 3 】

オフセットトランジスタは、オフ電流(オフ状態でのソースとドレイン間のリーク電流) がそうでないものに比較して小さいという特徴がある。また、オフセットでないトランジ スタは、オン電流(オン状態でのソースとドレイン間の電流)がオフセットトランジスタ より大きいという特徴がある。

20

30

10

【0044】

そのことについて、半導体内部の欠陥が無い理想的な酸化物半導体をチャネルに用いたト ランジスタのドレイン電流(ソース - ドレイン間の電流、I。)のゲート電圧(ソース -ゲート間の電位差、V。)依存性を数値計算した結果をもとに説明する。

[0045]

なお、酸化物半導体としては、インジウム(In)、スズ(Sn)、亜鉛(Zn)の比率 が、In:Sn:Zn=1:1:1のものを想定する。数値計算に先立って、この組成の 酸化物を用いてトランジスタを作製し、その特性よりバルク内欠陥密度は1×10¹²/ cm²程度であること、およびバルクの欠陥がない場合の移動度は120cm²/Vsで あることがわかった。

【0046】

ただし、半導体内部に欠陥がなくても、チャネルとゲート絶縁物との界面での散乱によっ てトランジスタの輸送特性は影響を受ける。すなわち、ゲート絶縁物界面から×だけ離れ た場所における移動度 μ→は以下の式で表される。

【0047】

【数2】

 $\frac{1}{\mu_1} = \frac{1}{\mu_0} + \frac{D}{B} \exp\left(-\frac{x}{G}\right)$

[0048]

ここで、 D はゲート方向の電界、 B 、 G は定数である。 B および G は、実際の測定結果よ り求めることができ、上記の測定結果からは、 B = 4 . 7 5 × 1 0 ⁷ c m / s 、 G = 1 0 n m (界面散乱が及ぶ深さ)である。 D が増加する(すなわち、ゲート電圧が高くなる) と数 2 の第 2 項が増加するため、移動度 μ ₁ は低下することがわかる。

【 0 0 4 9 】

以上の議論を元に、界面散乱のみを考慮したドレイン電流を計算した結果を図7に示す。 なお、ソースの電位を0Vとし、ドレインの電位を+1Vとした。数値計算にはシノプシ ス社製デバイス数値計算ソフト、Sentaurus Deviceを使用し、酸化物半

(8)

導体の比誘電率、バンドギャップ、電子親和力、厚さをそれぞれ、15、2.8電子ボルト、4.7電子ボルト、15nmとした。これらの値は、スパッタリング法により形成された薄膜を測定して得られたものである。

[0050]

数値計算に用いたトランジスタの断面構造を図6に示す。図6に示すトランジスタは酸化 物半導体層にN型の半導体領域603aおよび半導体領域603cを有する。半導体領域 603aおよび半導体領域603cの抵抗率は2×10⁻³ cmとする。

【0051】

図6(A)に示すトランジスタは、下地絶縁物601と、下地絶縁物601に埋め込まれ るように形成された酸化アルミニウムよりなる埋め込み絶縁物602の上に形成される。 トランジスタは半導体領域603a、半導体領域603cと、それらに挟まれ、チャネル 形成領域となる真性の半導体領域603bと、ゲート605を有する。ゲート605の幅 を33nmとする。

【0052】

ゲート605と半導体領域603bの間には、ゲート絶縁物604を有し、また、ゲート 605の両側面には側壁絶縁物606aおよび側壁絶縁物606b、ゲート605の上部 には、ゲート605と他の配線との短絡を防止するための絶縁物607を有する。側壁絶 縁物の幅は5nmとする。また、半導体領域603aおよび半導体領域603cに接して 、ソース608aおよびドレイン608bを有する。なお、このトランジスタにおけるチ ャネル幅は40nmとする。

【0053】

数値計算では、ゲート605、ソース608a、ドレイン608bの仕事関数をそれぞれ 、5.5電子ボルト、4.6電子ボルト、4.6電子ボルトとした。また、ゲート絶縁物 604の厚さは100nm、比誘電率は4.1とした。チャネル長およびチャネル幅は3 3nmおよび40nmである。

【0054】

図6(B)に示すトランジスタは、下地絶縁物601と、酸化アルミニウムよりなる埋め 込み絶縁物602の上に形成され、半導体領域603a、半導体領域603cと、それら に挟まれた真性の半導体領域603bと、幅33nmのゲート605とゲート絶縁物60 4と側壁絶縁物606aおよび側壁絶縁物606bと絶縁物607とソース608aおよ びドレイン608bを有する点で図6(A)に示すトランジスタと同じである。

図6(A)に示すトランジスタと図6(B)に示すトランジスタの相違点は、側壁絶縁物 606aおよび側壁絶縁物606bの下の半導体領域の導電型である。図6(A)に示す トランジスタでは、側壁絶縁物606aおよび側壁絶縁物606bの下の半導体領域はN 型の半導体領域603aおよび半導体領域603cであるが、図6(B)に示すトランジ スタでは、真性の半導体領域603bである。

[0056]

すなわち、半導体領域603a(半導体領域603c)とゲート605がLoffだけ重 ならない領域(オフセット領域)ができている。Loffをオフセット長という。図から 明らかなように、オフセット長は、側壁絶縁物606a(側壁絶縁物606b)の幅と同 じである。なお、図6(A)のトランジスタはLoffが0nmであり、オフセットトラ ンジスタでもオーバーラップトランジスタでもない。本明細書では、このようなトランジ スタをアラインドトランジスタと呼ぶことにする。

【0057】

現実には全くオーバーラップではなく、オフセットでもない構造は有りえず、若干のオー バーラップやオフセットであることは避けられないが、オーバーラップとオフセットの間 の構造を持つトランジスタとして、アラインドトランジスタを用いてもよい。

【0058】

図7において、点線は図6(A)の構造のトランジスタ(アラインドトランジスタ、Lo 50

20

10

ff=0nm)の特性を示し、実線はLoffが15nmである図6(B)の構造のトラ ンジスタ(オフセットトランジスタ)の特性を示す。 【0059】 酸化物半導体はバンドギャップが2.5電子ボルト以上であるため、熱励起のキャリアが 少なく、オフ状態では極めて高い抵抗を実現できる。しかしながら、シリコン半導体のよ うに短チャネル効果を抑制するためにチャネルにドーピングをおこなうことができないの で、ゲート電圧0Vでのドレイン電流は1pA以上である。 $\begin{bmatrix} 0 & 0 & 6 & 0 \end{bmatrix}$ オフ電流は、オフセットトランジスタ(図6(B))ではより小さくなる。図6(A)の トランジスタとの比較では、ゲート電圧0Vではドレイン電流は3桁小さく、ゲート電圧 が-1Vでは6桁以上小さくなる。しかしながら、オフセットトランジスタでは、オン電 流はオフセットでないトランジスタよりも少なくなる。ゲート電圧+1Vでは、図6(B))のトランジスタのドレイン電流は、図6(A)のトランジスタの1/3程度である。 [0061]本発明の一態様の構成により、オフセットトランジスタとそうでないトランジスタ(アラ インドトランジスタ、オーバーラップトランジスタ等)を同じ基板上に同時に形成するこ とができる。すなわち、回路内においては、オン電流が大きい方が好ましい部分にはオフ セットでないトランジスタを用い、また、オフ電流が小さい方が好ましい部分にはオフセ ットトランジスタを用いることができる。 【図面の簡単な説明】 [0062]【図1】本発明の一態様の半導体装置の断面模式図と回路の例を説明する図である。 【図2】本発明の一態様の半導体装置の作製工程を説明する断面図である。 【図3】本発明の一態様の半導体装置の回路を説明する図である。 【図4】本発明の一態様の半導体装置の作製工程を説明する断面図である。 【図5】本発明の一態様の半導体装置の作製工程を説明する断面図である。 【図6】数値計算に用いたトランジスタの断面構造を説明する図である。 【図7】酸化物半導体を用いたトランジスタの特性の数値計算結果である。 【図8】電子機器の例を示す図である。 【発明を実施するための形態】 [0063]以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異な る態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及 び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、 以下の実施の形態の記載内容に限定して解釈されるものではない。 [0064]また、図において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合 がある。よって、必ずしもそのスケールに限定されない。 [0065]なお、図は、理想的な例を模式的に示したものであり、図に示す形状又は値などに限定さ れない。例えば、製造技術による形状のばらつき、誤差による形状のばらつき、などを含 むことが可能である。 [0066]さらに、専門用語は、特定の実施の形態、又は実施例などを述べる目的で用いられる場合 が多い。ただし、発明の一態様は、専門用語によって、限定して解釈されるものではない [0067]

また、定義されていない文言(専門用語又は学術用語などの科学技術文言を含む)は、通 常の当業者が理解する一般的な意味と同等の意味として用いることが可能である。辞書等 により定義されている文言は、関連技術の背景と矛盾がないような意味に解釈されること 20

10

30

が好ましい。

【0068】

なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形 態で述べる別の内容(一部の内容でもよい)、及び/又は、一つ若しくは複数の別の実施 の形態で述べる内容(一部の内容でもよい)に対して、適用、組み合わせ、又は置き換え などをおこなうことが出来る。

[0069]

(実施の形態1)

図1(A)に本実施の形態の半導体装置の断面図を示す。半導体装置は基板101上に第 1酸化物半導体層102aと第2酸化物半導体層102bを有する。さらに、第1酸化物 半導体層102aに接して、第1層配線103a、第2酸化物半導体層102bに接して 、第1層配線103b、第1酸化物半導体層102aと第2酸化物半導体層102bに接 して、第1層配線103cを有する。

そして、第1酸化物半導体層102aと第2酸化物半導体層102b、第1層配線103 a、第1層配線103b、第1層配線103c上にゲート絶縁物104を有し、ゲート絶 縁物104上に第2層配線105a、第2層配線105b、第2層配線105c、第2層 配線105dを有する。

[0071]

この半導体装置には、2つのトランジスタと2つの容量素子が含まれている。このうち、 第1トランジスタは第2層配線105bをゲートとし、第1層配線103bを第1電極と する。また、第2トランジスタは第2層配線105aをゲートとし、第1層配線103a を第2電極とする。また、第1層配線103cは、第1トランジスタの第2電極としての 機能と第2トランジスタの第1電極としての機能を有する。第1トランジスタはゲートが 第1電極や第2電極が重ならない、オフセットトランジスタであり、第2トランジスタは ゲートが第1電極と第2電極と重なるオーバーラップトランジスタである。

【0072】

さらに、第1容量素子は、第2層配線105cをその第2電極とする。また、第2容量素 子は、第2層配線105dをその第2電極とする。なお、第1層配線103aは、第2容 量素子の第1電極としての機能も有する。第1層配線103cは、第1容量素子の第1電 極としての機能も有する。

以上の2つのトランジスタと2つの容量素子によって構成される回路を図1(D)に示す 。ここで、Triは第1トランジスタ、Tr2は第2トランジスタ、Csiは第1容量素 子、Cs2は第2容量素子である。第1トランジスタTriのゲートと第2トランジスタ Tr2のゲートは同じ信号端子CLKに接続され、第1トランジスタTriと第2トラン ジスタTr2は連動して動作する。例えば、第1トランジスタTriの第1電極は入力端 子INに接続し、与えられた入力信号が第2容量素子Cs2の第1電極のノードであるス トレージノードSNに保存される。なお、第1トランジスタTriのゲートと第2トラン ジスタTr2のゲートを分離し、それぞれに異なる信号を入力してもよい。 【0074】

また、第1容量素子Cs₁、第2容量素子Cs₂は、意図的に形成される容量である以外 に、配線間容量や寄生容量のような意図的に形成されない容量であってもよい。

[0075]

図1(B)に変形例を示す。図1(B)に示す半導体装置は、第2トランジスタがオフセットトランジスタであることを除けば、図1(A)の半導体装置と同じである。 【0076】

図1(C)に変形例を示す。図1(C)に示す半導体装置は、図1(A)の半導体装置では、2つ設けられていた酸化物半導体層(第1酸化物半導体層102aと第2酸化物半導体層102b)を一つの第1酸化物半導体層102としたものである。その他の構成は図

10

20

1 (A)の半導体装置と同じである。

【 0 0 7 7 】

(実施の形態2)

本実施の形態では、オフセットトランジスタとアラインドトランジスタを同一の酸化物半 導体層上に作製する方法を図2を用いて説明する。

【 0 0 7 8 】

<図2(A)>

基板201に酸化物半導体層202を形成する。基板201には各種基板を用いることができ、例えば、単結晶シリコンウェハー、ガラス基板、SOI(Silicon on Insulator)基板等を用いることができる。また、基板201の表面は絶縁性であることが好ましく、半導体あるいは導電性の基板を用いる場合には、表面に絶縁層(以下、第1の絶縁層、という)を設けるとよい。なお、基板201上に何らかの回路を形成し、その上に第1の絶縁層を設けてもよい。

【0079】

第1の絶縁層は酸化物であることが好ましく、過剰な酸素を含有しているとより好ましい。また、その水素濃度は十分に低いことが好ましく、水素濃度は1×10¹⁹ cm⁻³以下であることがより好ましい。そのためには、第1の絶縁層の少なくとも表面部は、十分に水素濃度の低減された雰囲気で、スパッタリング法により形成されるとよい。なお、第 1の絶縁層は誘電率が低いことが好ましいので、酸化シリコンを用いるとよい。

第1の絶縁層は表面が十分に平坦であることが好ましく、平均面粗さが1nm以下、好ま しくは0.3nm以下、より好ましくは0.1nm以下とするとよい。特に、その上に形 成される酸化物半導体層202が結晶性を有する場合には、表面の平坦性が十分でないと 、結晶性が不十分となることがある。また、平坦性が十分でないと、トランジスタ特性の ばらつきの原因となる。平坦な表面を得るためには、第1の絶縁層の表面を化学的機械的 研磨法により平坦化するとよく、その後、その表面をプラズマ処理するとなお好ましい。 【0081】

酸化物半導体層202は、上述の酸化物半導体のいずれかを用いて形成するとよく、その 厚さはトランジスタのサイズに応じて決定される。酸化物半導体層202の厚さは、例え ば、1nm以上30nm以下とすればよい。あるいは、チャネル長をLとするとき、酸化 物半導体層202の厚さはその1%以上10%未満となるようにするとよい。

[0082]

酸化物半導体層202は、酸化物半導体の膜を必要な形状にエッチングして得られる。酸 化物半導体の膜は、好ましくはスパッタリング法により、基板加熱温度を100 以上6 00 以下、好ましくは150 以上550 以下、さらに好ましくは200 以上50 0 以下とし、酸素ガスを有する雰囲気で成膜する。酸素ガスと希ガスの混合雰囲気とす る場合は、酸素ガスの割合は30体積%以上、好ましくは50体積%以上、さらに好まし くは80体積%以上とする。

【0083】

成膜時の基板加熱温度が高いほど、得られる酸化物半導体の膜に含まれる不純物(水素等)濃度は低くなる。また、酸化物半導体膜中の原子配列が整い、高密度化され、結晶が形成されやすくなる。酸化物半導体の膜のドナー濃度は1×10¹¹ cm⁻³以下であることが好ましい。

【0084】

次いで、ゲート絶縁物203を成膜する。ゲート絶縁物203の厚さはトランジスタのサ イズに応じて決定される。ゲート絶縁物203の厚さは、例えば、5nm以上30nm以 下とすればよい。あるいは、チャネル長をLとするとき、ゲート絶縁物203の厚さはそ の10%未満となるようにするとよい。また、ゲート絶縁物203の厚さは、その比誘電 率によっても決定され、比誘電率の大きな材料を用いれば、ゲート絶縁物203を厚くす ることもできる。 20

10

【0085】

なお、酸化物半導体層202の比誘電率 1と厚さt1とゲート絶縁物203の比誘電率 2と厚さt2とトランジスタとのチャネル長Lとの間で、(2t1+1t2)<0.1 2L、という関係を満たすとさらに好ましい。

【0086】

ゲート絶縁物203は、スパッタリング法、蒸着法、PCVD法、PLD法、ALD法またはMBE法を用いることができる。また、ゲート絶縁物203には、酸化シリコン、窒化シリコン、酸化室化シリコン、酸化アルミニウム、酸化タンタル、酸化ハフニウム、酸 化ジルコニウム、酸化イットリウム等を用いればよい。本実施の形態では、スパッタリン グ法を用いて酸化シリコン膜を100nmの厚さで成膜する。

【0087】

次いで、ゲート電極としても機能する第1層配線を形成するための第1の導電膜を形成す る。第1の導電膜の材料は、モリブデン、チタン、タンタル、タングステン、アルミニウ ム、銅、クロム、ネオジム、スカンジウム等の金属材料またはこれらを主成分とする合金 材料を用いて形成することができる。

【0088】

また、第1の導電膜を積層構造とし、その最下層に窒素を含む金属酸化物、具体的には、 窒素を含むIn-Ga-Zn系酸化物や、窒素を含むIn-Sn系酸化物や、窒素を含む In-Ga系酸化物や、窒素を含むIn-Zn系酸化物や、窒素を含む酸化錫や、窒素を 含む酸化インジウムや、金属窒化膜(InN、SnNなど)を用いてもよい。

【0089】

これらの材料は5電子ボルト以上、好ましくは5.5電子ボルト以上の仕事関数を有し、 ゲート電極として用いた場合、トランジスタのしきい値電圧をプラスにすることができ、 所謂ノーマリーオフのスイッチング素子を実現できる。

[0090]

さらに、第1の導電膜上に第2の絶縁層を形成する。例えば、酸化シリコン、窒化シリコン、酸化窒化シリコン、酸化アルミニウム等を形成する。第2の絶縁層の材料は、その後の異方性エッチングの工程でのエッチングストッパとなるような材料であることが好ましい。

【0091】

次いで、フォトリソグラフィ工程によって第1の導電膜と第2の絶縁層を加工して、第1 層配線204a、第1層配線204bとその上のエッチングストッパ205a、エッチン グストッパ205bを形成する。そして、オフセットトランジスタを設ける領域(図2(A)では右側)にレジスト206を形成する。

【 0 0 9 2 】

<図2(B)>

レジスト206、および、第1層配線204aとその上のエッチングストッパ205aを マスクとして、酸化物半導体層202に不純物をドーピングする。用いる不純物としては 、リン、硼素、窒素等が挙げられるがこれらに限定されず、酸化物半導体に含まれる酸素 と化合して、酸化物半導体の酸素欠損を増加させ、酸化物半導体中のドナー濃度を高める ものであればよい。

【 0 0 9 3 】

このようにしてN型酸化物半導体領域207が形成される。N型酸化物半導体領域207 のドナー濃度は1×10²⁰ cm⁻³以上であることが好ましい。この際、N型酸化物半 導体領域207の境界が、第1層配線204 aの両端とほぼ揃った形状に形成される。 【0094】

その後、プラズマCVD法等により、第3の絶縁層を形成し、これを異方性エッチングすることで側壁絶縁物208を形成する。この工程は公知の半導体技術(側壁形成技術)を参照できる。この際、ゲート絶縁物203は、側壁絶縁物208および第1層配線204 a、第1層配線204bの下にある部分を除いて、エッチングし、N型酸化物半導体領域 10

20

207を露出させる。

【 0 0 9 5 】

<図2(C)>

第2の導電膜を形成する。第2の導電膜の材料としては、第1の導電膜に用いることので きる材料から選択すればよい。第2の導電膜をエッチングして、第2層配線209a、第 2層配線209b、第2層配線209cを得る。第2層配線209aと第2層配線209 bはN型酸化物半導体領域207に接する。

[0096]

この工程により、本実施の形態の半導体装置の主要な部分が形成される。すなわち、第1 トランジスタ(オフセットトランジスタ)は、第1層配線204bをゲートとし、第2層 配線209cを第1電極、第2層配線209bを第2電極とする。また、第2トランジス タ(アラインドトランジスタ)は、第1層配線204aをゲートとし、第2層配線209 bを第1電極、第2層配線209aを第2電極とする。

【0097】

<図2(D)>

その後、容量用絶縁物210を形成する。容量用絶縁物210は容量素子の誘電体として 用いる。そのためには、その厚さと比誘電率を適切なものとするとよい。例えば、ゲート 絶縁物203の厚さやそれに用いることのできる材料を参照すればよい。また、容量用絶 縁物210の一部には必要に応じてコンタクトホール等を設けてもよい。

[0098]

その後、第3層配線211a、第3層配線211b、第3層配線211cを形成する。第 3層配線211aは第2層配線209aと、第3層配線211bは第2層配線209bと 、それぞれ容量素子を形成し、第3層配線211aは第2容量素子の第2電極、第3層配 線211bは第1容量素子の第2電極となる。なお、第2層配線209aは第2容量素子 の第1電極、第2層配線209bは第1容量素子の第1電極である。また、第3層配線2 11cは、第2層配線209cと接する。

[0099]

さらに保護膜や層間絶縁物を設けてもよい。このようにして、酸化物半導体層202上に、オフセットトランジスタとアラインドトランジスタを形成できる。なお、アラインドトランジスタの代わりに、オーバーラップトランジスタやオフセットトランジスタを形成してもよい。

[0100]

(実施の形態3)

本実施の形態では、図1(D)に示される回路を用いる例について説明する。図3(A) は図1(D)の回路を用いた記憶素子の回路を示す。この記憶素子は第1トランジスタ3 01と第2トランジスタ302と第1容量素子304と第2容量素子305よりなる回路 (図の点線で囲まれた部分)と読み出しトランジスタ303とを有する。図の点線で囲ま れた部分は図1(D)に示す回路と同様なものである。

 $\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$

第1トランジスタ301はオフセットトランジスタであり、第2トランジスタ302はア ラインドトランジスタ、オーバーラップトランジスタ、オフセットトランジスタのいずれ かであり、いずれも実施の形態1あるいは実施の形態2で示したように、酸化物半導体層 を用いて構成される。

[0102]

データを入力する際には、第1トランジスタ301と第2トランジスタ302のゲートの 信号端子CLKの電位を制御し、第1トランジスタ301と第2トランジスタ302をオ ンとする。そして、入力端子INをデータに応じた電位とする。その結果、第1容量素子 304の第1電極と第2容量素子305の第1電極の電位(ストレージノードSNの電位)をデータに応じたものとすることができる。

【0103】

10

20

30

この回路のストレージノードSNの電位によって読み出しトランジスタ303の状態が変化する。すなわち、ストレージノードSNの電位が高ければ読み出しトランジスタ303 はオンとなることがあるが、ストレージノードSNの電位が低ければ読み出しトランジス タ303はオフとなる。したがって、第1端子T1と第2端子T2の導通状態を調べるこ とで、保持されているデータを判別できる。

(15)

[0104]

似たような構造の記憶素子はゲインセル(例えば、特許文献1参照)として知られている が、図3(A)に示す回路の記憶素子は、オフ電流の低いオフセットトランジスタである 第1トランジスタ301を有することにより、通常のゲインセルよりも長期間、データを 保持できる。

【0105】

図3(B)は図1(D)の回路を用いた他の記憶素子の回路を示す。この記憶素子は第1 トランジスタ317と第2トランジスタ318と第1容量素子320と第2容量素子32 1よりなる回路(図の点線で囲まれた部分)と読み出しトランジスタ319とを有する。 図の点線で囲まれた部分は図1(D)に示す回路と同様なものである。また、点線で囲ま れた部分と読み出しトランジスタ319は、図3(A)で示した回路と同様のものである

【0106】

第1トランジスタ317はオフセットトランジスタであり、第2トランジスタ318はア ラインドトランジスタ、オーバーラップトランジスタ、オフセットトランジスタのいずれ かであり、いずれも実施の形態1あるいは実施の形態2で示したように、酸化物半導体層 を用いて構成される。

【0107】

図3(B)に示す回路は、さらに、Pチャネル型トランジスタ311とNチャネル型トラ ンジスタ313よりなる第1のインバータと、Pチャネル型トランジスタ312とNチャ ネル型トランジスタ314よりなる第2のインバータと、それらに接続する第1スイッチ ングトランジスタ315と第2スイッチングトランジスタ316とを有する。これらはフ リップフロップ回路を形成するものである。このような回路は、例えば、CPUのレジス タ等に使用される。

[0108]

データを書き込む際には、入力端子INをデータに応じた電位とし、第3端子T3を適切 な高電位に、第4端子T4を適切な低電位とし、さらに第1スイッチングトランジスタ3 15のゲートの信号端子CLK1の電位と、第2スイッチングトランジスタ316のゲー トの信号端子CLK2の電位を制御し、第1スイッチングトランジスタ315と、第2ス イッチングトランジスタ316をオンとする。データは第1のインバータと第2のインバ ータによって形成された帰還回路に維持される。その後、第1スイッチングトランジスタ 315はオフとする。

【0109】

記憶されているデータは出力端子OUTの電位を読み取ることで判定できる。なお、出力 端子OUTの電位は、入力端子INに与えられた電位とは逆位相であることに注意する必 要がある。例えば、データ"1 "のときに入力端子INに与える電位を+2V、データ" 0 "のときに入力端子INに与える電位を0Vとするとき、入力されたデータが"1"(入力端子INの電位が+2V)であれば、出力端子OUTの電位は0Vである。

[0110]

上記の定常状態は、第3端子T3と第4端子T4の電位が維持されている場合に保持され るが、第3端子T3と第4端子T4の電位差が小さくなると、データが消滅してしまう。 すなわち、上記のフリップフロップ回路のみでは、データを保持するには常に相当量の電 力を消費する。しかし、図に点線で示す部分にデータを退避させることで、記憶素子の消 費電力を低減することができる。

【0111】

50

40

30

20

データを退避させるには、フリップフロップ回路が定常状態を保った状態で、第1トランジスタ317と第2トランジスタ318のゲートの信号端子CLK3の電位を制御して、 第1トランジスタ317と第2トランジスタ318をオンとする。その結果、ストレージ ノードSNの電位は保持されていたデータに応じたものとなる。上記の例では、保持され ていたデータが"1"の場合には、ストレージノードSNの電位は0V、保持されていた データが"0"の場合には、ストレージノードSNの電位は+2Vとなる。

【0112】

その後、第1トランジスタ317と第2トランジスタ318のゲートの信号端子CLK3 の電位を制御して、第1トランジスタ317と第2トランジスタ318をオフとする。第 1スイッチングトランジスタ315と、第2スイッチングトランジスタ316もオフとす るとよい。

【0113】

ストレージノードSNの電位はオフ電流の低いオフセットトランジスタである第1トラン ジスタ317により長期に維持される。なお、ストレージノードSNの電位は、時間の経 過によって変動して、初期の値からずれることがある。

[0114]

データを上記回路に退避させている間には、信号端子CLK3の電位を回路の他の部分の 電位よりも低くしてもよい。そうすることによりストレージノードSNの電位をより長時 間にわたって保持できる。その際に消費される電流は極めて限定的であり、ほとんどは、 第1トランジスタ317と第2トランジスタ318のゲートリーク(ゲートとソースやド

レイン間のリーク電流)であり、測定することが困難なほど微量である。

20

30

10

【0115】

退避させたデータを元に戻すには、以下のようにおこなえばよい。まず、第2スイッチン グトランジスタ316と第1トランジスタ317と第2トランジスタ318はオフのまま とする。また、第1スイッチングトランジスタ315をオンとして、さらに入力端子IN の電位をデータ"1"に対応するもの(上記の例では+2V)とする。第5端子T5の電 位もこれにあわせて+2Vとするとよい。第3端子T3、第4端子T4は、それぞれ所定 の電位とする。この結果、第1のインバータのゲートの電位は+2Vとなる。その後、第 1スイッチングトランジスタ315をオフとする。

[0116]

次に第5端子の電位を0Vとする。もし、ストレージノードSNの電位が0V(あるいは それに近い値)であれば、読み出しトランジスタ319はオフであるので、第1のインバ ータのゲートの電位は+2Vのままである。しかし、ストレージノードSNの電位が+2 V(あるいはそれに近い値)であれば、読み出しトランジスタ319はオンであるので、 第1のインバータのゲートの電位は0Vとなる。

[0117]

ところで、保存されていたデータが"1"であれば、ストレージノードSNの電位は0V (あるいはそれに近い値)、"0"であれば+2V(あるいはそれに近い値)であったの で、保存されていたデータが"1"であれば、第1のインバータのゲートの電位は+2V 、保存されていたデータが"0"であれば、第1のインバータのゲートの電位は0Vとな る。この状態は最初に入力された状態と同じである。

【0118】

その状態で、第2スイッチングトランジスタ316をオンとすると、フリップフロップ回路は第1のインバータのゲートの電位に応じた定常状態となる。この状態はデータを退避 する前と同じである。

[0119]

このような記憶素子を作製する場合には、シリコンウェハー上に、公知の半導体作製技術 を用いて、 P チャネル型トランジスタ311とN チャネル型トランジスタ313よりなる 第1のインバータと、 P チャネル型トランジスタ312とN チャネル型トランジスタ31 4よりなる第2のインバータと、それらに接続する第1スイッチングトランジスタ315

(17) JP 2013-8959 A 2013.1.10 と第2スイッチングトランジスタ316とを形成し、その回路上に、酸化物半導体を用い て、第1トランジスタ317、第2トランジスタ318を形成するとよい。 [0120]また、読み出しトランジスタ319は、フリップフロップ回路を構成するトランジスタと 同じ層に形成してもよいが、第1トランジスタ317、第2トランジスタ318と同じ層 に形成すると、従来の記憶素子と同じ面積で回路を作製でき、集積度を低下させなくて済 む。 $\begin{bmatrix} 0 & 1 & 2 & 1 \end{bmatrix}$ なお、最小加工線幅を F とするとき、フリップフロップ回路は 5 0 F²以上の面積を要す るため、第1トランジスタ317、第2トランジスタ318のチャネル長を、フリップフ ロップ回路を構成するトランジスタのチャネル長の5倍以上としてもよい。第1トランジ スタ317、第2トランジスタ318を長チャネルとすることにより、オフ特性を向上さ せることができる。 [0122] (実施の形態4) 本実施の形態では、図3(B)で示したような記憶素子を作製する際に用いることのでき る方法について図4および図5を用いて説明する。なお、図4および図5に示す断面図は 記憶素子の特定の断面ではない。 $\begin{bmatrix} 0 & 1 & 2 & 3 \end{bmatrix}$ まず、シリコンウェハー等の基板401上に公知の半導体集積回路作製技術を用いて、N 型ウェル401n、P型ウェル401p、素子分離絶縁物402、N型領域403n、P 型領域403p、第1層配線404a、第1層配線404bを形成する(図4(A)参照)。第1層配線404a、第1層配線404bはトランジスタのゲートとなる。 【0124】 さらに、第1層間絶縁物405を形成し、コンタクトホールを形成して、第1コンタクト プラグ406a、第1コンタクトプラグ406b、第1コンタクトプラグ406cを形成 する(図4(B)参照)。 [0125]さらに、第2層間絶縁物407と第2層配線408a、第2層配線408b、第2層配線 408c、第2層配線408dを形成する。ここまでは公知の半導体集積回路作製技術を 用いることができる。なお、第2層間絶縁物407と第2層配線408a、第2層配線4 08b、第2層配線408c、第2層配線408dの表面は実施の形態2で説明したよう に、十分に平坦化しておくことが好ましい。また、第2層間絶縁物407は実施の形態2 の第1の絶縁層と同様な材料で形成するとよい。 [0126] その後、酸化物半導体層409、ゲート絶縁物410、第3層配線411a、第3層配線 4 1 1 b、第 3 層配線 4 1 1 c、第 3 層配線 4 1 1 dを形成する(図 4 (C)参照)。こ

れらの形成に関しては、実施の形態2を参照すればよい。

【0127】

ここで、第3層配線411bと第3層配線411dは、トランジスタのゲート配線となる べきものである。本実施の形態では、第3層配線411bと第3層配線411dと酸化物 半導体層409が重なる部分では、第3層配線411bと第3層配線411dは第2層配 線408a、第2層配線408b、第2層配線408c、第2層配線408dと重ならな いようにする。

【0128】

すなわち、図に示すように、第2層配線408bと第3層配線411b、第2層配線40 8cと第3層配線411b、第2層配線408cと第3層配線411d、第2層配線40 8dと第3層配線411dは、適切なオフセット長を有するオフセット状態となるように する。

[0129]

50

10

20

30

レジスト412をもちいて、オフセットトランジスタを作製する部分を覆い、不純物を酸 化物半導体層409に注入して、N型酸化物半導体領域413を形成する(図5(A)参 照)。N型酸化物半導体領域413の端は、おおよそ第3層配線411bの端と揃ってい るため、アラインドトランジスタを形成できる。この工程の詳細は実施の形態2を参照で きる。

[0130]

さらに、第3層間絶縁物414を形成する(図5(B)参照)。以上のようにして、オフ セットトランジスタである第1トランジスタ415d、アラインドトランジスタである第 2トランジスタ415b、第1容量素子415c、第2容量素子415aを形成できる。 【0131】

これら第1トランジスタ415d、第2トランジスタ415b、第1容量素子415c、 第2容量素子415aは、図3(A)に示される第1トランジスタ301、第2トランジ スタ302、第1容量素子304、第2容量素子305や図3(B)に示される第1トラ ンジスタ317、第2トランジスタ318、第1容量素子320、第2容量素子321と して使用できる。

【0132】

また、N型領域403n、P型領域403p、第1層配線404a、第1層配線404b 等によって形成されるトランジスタは、図3(B)のPチャネル型トランジスタ311、 Pチャネル型トランジスタ312、Nチャネル型トランジスタ313、Nチャネル型トラ ンジスタ314、第1スイッチングトランジスタ315、第2スイッチングトランジスタ 316として使用してもよい。このようにトランジスタを多層に形成することで回路の集 積度を低下させることなく、優れた特性が得られる。

20

30

10

【0133】

(実施の形態5)

本実施の形態では、上述の実施の形態で説明した半導体装置を電子機器に適用する場合に ついて、図8を用いて説明する。本実施の形態では、コンピュータ、電子ペーパー、テレ ビジョン装置(テレビ、またはテレビジョン受信機ともいう)などの電子機器に、上述の 半導体装置を適用する場合について説明する。

[0134]

図8(A)は、ノート型のパーソナルコンピュータ700であり、筐体701、筐体70 2、表示部703、キーボード704などによって構成されている。筐体701と筐体7 02の少なくともーには、先の実施の形態に示す記憶素子を有する半導体装置を設けると よい。そのため、長期間の記憶保持が可能で、且つ消費電力が十分に低減されたノート型 のパーソナルコンピュータが実現される。

【0135】

図8(B)は、電子ペーパーを実装した電子書籍710であり、筐体711と筐体712 の2つの筐体で構成されている。筐体711および筐体712には、それぞれ表示部71 3および表示部714が設けられている。筐体711と筐体712は、軸部715により 接続されており、該軸部715を軸として開閉動作をおこなうことができる。

【0136】

また、筐体711は、操作キー716、電源ボタン717、スピーカー718などを備え ている。筐体711、筐体712の少なくとも一には、先の実施の形態に示す記憶素子を 有する半導体装置を設けるとよい。そのため、長期間の記憶保持が可能で、且つ消費電力 が十分に低減された電子書籍が実現される。

【0137】

図8(C)は、テレビジョン装置720であり、筐体721、表示部722、スタンド7 23などで構成されている。筐体721には、先の実施の形態に示す記憶素子を有する半 導体装置が搭載できる。そのため、長期間の記憶保持が可能で、且つ消費電力が十分に低 減されたテレビジョン装置が実現される。

【0138】

50

以上のように、本実施の形態に示す電子機器には、先の実施の形態に係る記憶素子が搭載 されている。このため、長期間のデータの保存に耐え、消費電力を低減した電子機器が実 現される。もちろん、図8に示された電子機器以外においても、先の実施の形態に係る半 導体装置を搭載することにより同様の効果が得られる。

【符号の説明】 [0139] 基板 101 102 第1酸化物半導体層 102a 第 1 酸化物半導体層 102b 第2酸化物半導体層 103a 第1層配線 103b 第1層配線 103c 第1層配線 ゲート絶縁物 104 105a 第2層配線 105b 第2層配線 105c 第2層配線 105d 第2層配線 201 基板 酸化物半導体層 202 203 ゲート絶縁物 204a 第1層配線 第1層配線 204b 205a エッチングストッパ 205b エッチングストッパ 206 レジスト 207 N型酸化物半導体領域 208 側壁絶縁物 209a 第2層配線 209b 第2層配線 209c 第2層配線 210 容量用絶縁物 211a 第3層配線 211b 第3層配線 211c 第3層配線 301 第1トランジスタ 第2トランジスタ 302 303 読み出しトランジスタ 304 第1容量素子 305 第2容量素子 3 1 1 P チャネル型トランジスタ 3 1 2 P チャネル型トランジスタ 3 1 3 N チャネル型トランジスタ 3 1 4 Nチャネル型トランジスタ 第1スイッチングトランジスタ 3 1 5 3 1 6 第2スイッチングトランジスタ 3 1 7 第1トランジスタ 3 1 8 第2トランジスタ 319 読み出しトランジスタ

320

第1容量素子

10

20

30

(20)

3	2	1		第2容量素子
4	0	1		基板
4	0	1	n	N型ウェル
4	0	1	р	P 型ウェル
4	0	2		素子分離絶縁物
4	0	3	n	N型領域
4	0	3	р	P 型 領 域
4	0	4	a	第1層配線
4	0	4	b	第1層配線
4	0	5		第1層間絶縁物
4	0	6	а	第1コンタクトプラグ
4	0	6	b	第1 コンタクトプラグ
4	0	6	ĉ	第1コンタクトプラグ
4	0	7	•	第 2 回 間絶縁物
4	0	, 8	а	第 2 屆 配線
4	0	8	b	第 2 層 配 線
4	0	8	c	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- Л	0	8	d	2 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
 1	0	G G	u	- デ 2 眉 記 詠 酸 化 物 半 道 休 屆
- Л	1	0		成に物中等体値
т Л	1	1	2	了 一 記 祿 10
4 1	1	1	a h	步 3 眉 肌 脉 笠 2 岡 印 娘
4 1	1	1	0 C	
4	1	1	ر ما	乐 3 眉 �� 脉 笠 2 屋 町 伯
4	1	ן ר	a	
4	1	2		
4	1	3		N型酸化初丰導体領域
4	1	4		男 3 僧間絶縁物
4	1	5	a	第2谷重素子
4	1	5	b	第2トランシスタ
4	1	5	c	第1谷量素子
4	1	5	d	第1トランジスタ
6	0	1		下地絶縁物
6	0	2		埋め込み絶縁物
6	0	3	а	半導体領域
6	0	3	b	半導体領域
6	0	3	С	半導体領域
6	0	4		ゲート絶縁物
6	0	5		ゲート
6	0	6	а	側壁絶縁物
6	0	6	b	側壁絶縁物
6	0	7		絶縁物
6	0	8	а	ソース
6	0	8	b	ドレイン
7	0	0		パーソナルコンピュータ
7	0	1		筐体
7	0	2		筐体
7	0	3		表示部
7	0	4		キーボード
7	1	0		電子書籍
7	1	1		筐体

712 筐体 713 表示部 7 1 4 表示部 715 軸部 716 操作キー 717 電源ボタン 7 1 8 スピーカー 720 テレビジョン装置 721 筐体 722 表示部 723 スタンド ΙN 入力端子 ОИТ 出力端子 CLK 信号端子 CLK1 信号端子 信号端子 CLK2 CLK3 信号端子 ストレージノード SΝ Τrı 第1トランジスタ Tr₂ 第2トランジスタ 第1容量素子 C S 1 **C** S ₂ 第 2 容量素子 T 1 第1端子 Т2 第 2 端子 Т3 第3端子 Т4 第4端子 第 5 端子 Т5

10

【図3】

【図4】

-608b

603c

 $\hat{\gamma}$

602

(A)

 \approx

【図6】

413 413

【図7】

【図8】

 (A)

(B)

(C)

フロントページの続き													
(51)Int.Cl.					FΙ						テー	-マコード (参考	髩)
H 0 1 L	27/06	(200	06.01)		Н	0 1 L	27/06	6 1	02A				
H 0 1 L	21/8238	(200	06.01)		Н	0 1 L	27/08	3 3	2 1 L				
H 0 1 L	27/092	(200	06.01)		Н	0 1 L	27/08	3 1	0 2 C				
H 0 1 L	21/822	(200	06.01)		Н	0 1 L	27/04	1	F				
H 0 1 L	27/04	(200	06.01)		н	0 1 L	27/04	1	C				
H 0 1 L	21/336	(200	06.01)		Н	0 1 L	29/78	86	17A	L			
Fターム(参考	賃) 5F083 ↓	ADO2 JA39	AD21 JA42	AD69 JA60	HA02	JA02	JA05	JA06	JA19	JA36 、	JA37		
	5F110	AA06	AA30	BB01	BB03	BB04	BB05	BB11	CC01	CC02	DD02		
		DD05	DD12	DD13	DD17	DD21	DD25	EE02	EE03	EE04	EE06		
		EE08	EE11	EE14	EE32	FF01	FF02	FF03	FF04	FF05	FF27		
		FF28	FF30	GG01	GG06	GG12	GG13	GG15	GG17	GG25	GG26		
		GG28	GG29	GG35	GG43	GG58	HJ01	HJ04	HK02	HK03	HK04		
		HK06	HK08	HK17	HK21	HM02	HM14	NN02	NN22	NN23	NN24		
		NN72	NN74	NN78	QQ11	QQ19							

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第2区分 【発行日】平成27年6月25日(2015.6.25)

【公開番号】特開2013-8959(P2013-8959A)

```
【公開日】平成25年1月10日(2013.1.10)
【年通号数】公開・登録公報2013-002
【出願番号】特願2012-118160(P2012-118160)
【国際特許分類】
 H 0 1 L 29/786
                (2006.01)
 H 0 1 L 21/8234
               (2006.01)
 H 0 1 L 27/088
                (2006.01)
 H 0 1 L 21/8242
                (2006.01)
 H 0 1 L 27/108
                (2006.01)
 H 0 1 L 27/06
                (2006.01)
 H 0 1 L 21/8238
                (2006.01)
 H 0 1 L 27/092
                (2006.01)
 H 0 1 L 21/822
                (2006.01)
 H 0 1 L 27/04
                (2006.01)
 H 0 1 L 21/336 (2006.01)
(FI)
 H 0 1 L 29/78
              618B
 H 0 1 L 27/08
               102B
 H 0 1 L 29/78
              614
 H 0 1 L 27/10
               671C
 H 0 1 L 27/10
               621Z
 H 0 1 L 27/06
              102A
 H 0 1 L 27/08
               321L
 H 0 1 L 27/08
               102C
 H 0 1 L 27/04
                    F
 H 0 1 L 27/04
                    С
 H 0 1 L 29/78
               617A
【手続補正書】
【提出日】平成27年5月8日(2015.5.8)
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】発明の名称
【補正方法】変更
【補正の内容】
【発明の名称】半導体装置
【手続補正2】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
第1トランジスタと、第2トランジスタと、を有し、
前記第1トランジスタは、第1のゲート電極と、第1のゲート絶縁物と、前記第1のゲ
```

ート絶縁物を介して前記第1のゲート電極と<u>重なる</u>第1の酸化物半導体層と、前記第1の 酸化物半導体層に接する第1のソース電極及び第1のドレイン電極とを有し、

前記第2トランジスタは、第2のゲート電極と<u>第</u>2のゲート絶縁物と、前記第2のゲート絶縁物を介して前記第2のゲート電極と<u>重なる</u>第2の酸化物半導体層と、前記第2の 酸化物半導体層に接する第2のソース電極及び第2の<u>ドレイン</u>電極と<u>を有し</u>、

前記第1のソース電極及び前記第1のドレイン電極の一方は、前記第2のソース電極及び前記第2のドレイン電極の一方と接続され、

上方から見たときに、前記第1のソース電極及び<u>前記</u>第1のドレイン電極は、<u>前記</u>第1 のゲート電極から離れており、

上方から見たときに、前記第2のソース電極及び<u>前記</u>第2のドレイン電極は、<u>前記</u>第2 のゲート電極から離れており、

<u>前記第2トランジスタは、N型酸化物半導体領域を有し、</u>

<u>前記N型酸化物半導体領域は、前記第2のゲート電極をマスクとして第2の酸化物半導体層に不純物をドーピングすることにより形成されたものである</u>ことを特徴とする半導体 装置。

【請求項2】

第1トランジスタと、第2トランジスタと、第1の容量と、第2の容量と、を有し、 前記第1トランジスタは、第1のゲート電極と、第1のゲート絶縁物と、前記第1のゲ

ート絶縁物を介して前記第1のゲート電極と<u>重なる</u>第1の酸化物半導体層と、前記第1の 酸化物半導体層に接する第1のソース電極及び第1のドレイン電極とを有し、

前記第2トランジスタは、第2のゲート電極と、第2のゲート絶縁物と、前記第2のゲート絶縁物を介して前記第2のゲート電極と重なる第2の酸化物半導体層と、前記第2の酸化物半導体層に接する第2のソース電極及び第2のドレイン電極とを有し、

前記第1のソース電極及び前記第1のドレイン電極の一方は、前記第2のソース電極及び前記第2のドレイン電極の一方と接続され、

前記第2のソース電極及び前記第2のドレイン電極の一方は、前記第1の容量<u>と</u>接続され、

前記第2のソース電極及び前記第2のドレイン電極のもう一方は、前記第2の容量<u>と</u>接 続され、

上方から見たときに、前記第1のソース電極及び<u>前記</u>第1のドレイン電極は、<u>前記</u>第1 のゲート電極から離れており、

上方から見たときに、前記第2のソース電極及び<u>前記</u>第2のドレイン電極は、<u>前記</u>第2 のゲート電極から離れて<u>おり、</u>

前記第2トランジスタは、N型酸化物半導体領域を有し、

前記N型酸化物半導体領域は、前記第2のゲート電極をマスクとして第2の酸化物半導 体層に不純物をドーピングすることにより形成されたものであることを特徴とする半導体 装置。

【請求項3】

請求項1<u>又は2</u>において、さらに第3のゲート電極を含む第3トランジスタを有し、

前記第3のゲート電極は、前記第2のソース電極及び前記第2のドレイン電極のもう一 方と接続されていることを特徴とす<u>る半</u>導体装置。

【請求項4】

<u>請求項1乃至3のいずれか一項において、</u>前記第1のゲート電極は<u>前記</u>第2のゲート電 極と接続されていることを特徴とす<u>る半</u>導体装置。

【請求項5】

<u>請求項1乃至4のいずれか一項において、</u>前記第1の酸化物半導体層と前記第2の酸化 物半導体層のそれぞれは、インジウム及び亜鉛を含むことを特徴とす<u>る半</u>導体装置。